2004 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Review

Chemical Hydride Slurry for Hydrogen Production and Storage

Andrew W. McClaine Safe Hydrogen, LLC 25 May 2004

Objectives

- Project Objective
 - Demonstrate Magnesium Hydride Slurry is a cost effective, safe, and high-density hydrogen storage, transportation, and production medium
 - Pumpable and High density slurry offers infrastructure advantages
 - High system energy density with high vehicle range
- Objective of Work Over Past Year
 - This is a new project

Budget

- Total funding for project
 - \$2,272,244
- Cost Share
 - \$1,800,000 DOE
 - \$472,244Safe Hydrogen
- Funding for FY04
 - -\$756,974

Technical Barriers and Targets

- DOE Technical Barriers for Chemical Hydride Storage
 - A. Cost
 - B. Weight and Volume
 - C. Efficiency
 - G. Life Cycle and Efficiency Analyses
 - Q. Regeneration Processes
 - R. Byproduct Removal

DOE Technical Targets

Approach

- Slurry Develop a stable and very fluid MgH₂ slurry with slurry energy density of 3.9kWh/kg and 4.8kWh/L
- Mixer Develop mixing system to use MgH₂ slurry and to meet 2kWh/kg and 1.5kWh/L system targets
- Cost Evaluate and develop Mg reduction and slurry production technologies to show potential cost of hydrogen, slurry, and system
 - Comparative evaluation of alternate Mg reduction technologies
 - Experimental Solid-oxide Oxygen-ion-conducting Membrane (SOM) process
 - Experimental carbothermic reduction process
 - Slurry production and component recycling

SOM Process Concept for MgO Reduction

Advantages

- Reduced Energy-10 kWh/kg Mg
 (compare to 16 kWh/kg Mg for MgCl₂
 process and 6.9 kWh/kg Mg theoretical
 min energy consumption)
- Reduced Plant Cost
 - Oxide source can be directly electrolyzed - 1/3 of plant footprint of MgCl₂ plant
 - High current densities (high production rates) are possible

Storage System Cost

\$/kW hour hour: based on 5kg system/tank with all system/tank charges allocated against first 5kg fill.

Fuel Cost & Production Cost Drivers

cost drivers shift from material to energy

Project Timeline

♦ Go/No-Go

YEAR 1	YEAR_2	YEAR 3
Task 1 - Slurry Development		Slurry
Task 2 - Mixer Development	Optimize	Mixer
	Task 3 - Slu	xer Testing
	Task 4 - Recycle Org	S Optimize
Task 5 - Hydridi	ng System	Task 5 - Hydriding System
Task 6 - Reduction Study		
Task 7 - SOM Development		Recycling
	Task 8 - SOM Development	Final Exps
	Task 9 - Carbothermic Red.	
		Task 10 - Carbothermic Red.
		Task 11 - Cost Reduction Study
	Task 12 - Management	

Project Safety

- MgH₂ slurry
 - No gaseous hydrogen until it is mixed with water
 - Oils reduce slurry flammability
 - Oils in slurry protect hydride from inadvertent contact with moisture in air
 - Stable at normal temperatures and pressures
 - Does not react readily at normal environmental temperatures
- Mg(OH)₂ byproduct
 - Mg(OH)₂ also known as "Milk of Magnesia"
 - pH <10.5, mild caustic
 - Stable at normal temperatures and pressures
- Task safety
 - Safety analyses will be performed with each task
 - Written safety procedures will be set up for each task
 - All personnel will be trained in safety procedures

Technical Accomplishments/Progress

- New project. Work began in April 2004
- Presentation at the FreedomCAR Tech Team meeting in February 2004
- Contract signed, subcontracts in progress

Interactions and Collaborations

Project team

- Safe Hydrogen LLC: Lead, slurry developer
- Boston University: SOM evaluation and development
- Hatch Technology LLC: Reduction process comparisons, slurry mixer development, process designs for slurry oils reclamation, etc
- Metallurgical Viability: Carbothermic Mg reduction evaluation
- HERA Hydrogen Storage Systems, Inc: Mg hydriding process design

Responses to FreedomCAR Tech Team Comments

- Efficiency of processes
 - Task 6 Reduction study will compare efficiencies of the various potential processes
 - Over the duration of the project, we intend to determine production costs for large scale processing
- Cost of Mg
 - Task 6 Reduction Study will seek comparisons of the cost of Mg for four process alternatives
 - Reduction processes may not need to return high grade Mg so cost of process might be lower than those for metals grade systems
- Detailed breakout of system mass and volume
 - Task 1 Slurry Development and Task 2 Mixer Development will be concerned with minimizing the system mass and volume once the mixing system is proven
- Water balance
 - Task 2 Mixer development will deal with on-board water management

Future Work

- FY 2004/2005
 - Develop MgH₂ slurry
 - Develop MgH₂ mixer
 - Evaluate hydriding systems
 - Evaluate and compare Mg reduction systems
 - Begin experimental development of SOM process for slurry recycling